Enter a problem...
Finite Math Examples
,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.3
Simplify .
Step 1.3.1
Rewrite as .
Step 1.3.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.4.1
First, use the positive value of the to find the first solution.
Step 1.4.2
Next, use the negative value of the to find the second solution.
Step 1.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2
Step 2.1
Replace all occurrences of with in each equation.
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Step 2.1.2.1
Simplify .
Step 2.1.2.1.1
Simplify each term.
Step 2.1.2.1.1.1
Rewrite as .
Step 2.1.2.1.1.2
Expand using the FOIL Method.
Step 2.1.2.1.1.2.1
Apply the distributive property.
Step 2.1.2.1.1.2.2
Apply the distributive property.
Step 2.1.2.1.1.2.3
Apply the distributive property.
Step 2.1.2.1.1.3
Simplify and combine like terms.
Step 2.1.2.1.1.3.1
Simplify each term.
Step 2.1.2.1.1.3.1.1
Multiply .
Step 2.1.2.1.1.3.1.1.1
Raise to the power of .
Step 2.1.2.1.1.3.1.1.2
Raise to the power of .
Step 2.1.2.1.1.3.1.1.3
Use the power rule to combine exponents.
Step 2.1.2.1.1.3.1.1.4
Add and .
Step 2.1.2.1.1.3.1.2
Rewrite as .
Step 2.1.2.1.1.3.1.2.1
Use to rewrite as .
Step 2.1.2.1.1.3.1.2.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.3.1.2.3
Combine and .
Step 2.1.2.1.1.3.1.2.4
Cancel the common factor of .
Step 2.1.2.1.1.3.1.2.4.1
Cancel the common factor.
Step 2.1.2.1.1.3.1.2.4.2
Rewrite the expression.
Step 2.1.2.1.1.3.1.2.5
Simplify.
Step 2.1.2.1.1.3.1.3
Expand using the FOIL Method.
Step 2.1.2.1.1.3.1.3.1
Apply the distributive property.
Step 2.1.2.1.1.3.1.3.2
Apply the distributive property.
Step 2.1.2.1.1.3.1.3.3
Apply the distributive property.
Step 2.1.2.1.1.3.1.4
Simplify and combine like terms.
Step 2.1.2.1.1.3.1.4.1
Simplify each term.
Step 2.1.2.1.1.3.1.4.1.1
Multiply by .
Step 2.1.2.1.1.3.1.4.1.2
Multiply by .
Step 2.1.2.1.1.3.1.4.1.3
Move to the left of .
Step 2.1.2.1.1.3.1.4.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.1.3.1.4.1.5
Multiply by by adding the exponents.
Step 2.1.2.1.1.3.1.4.1.5.1
Move .
Step 2.1.2.1.1.3.1.4.1.5.2
Multiply by .
Step 2.1.2.1.1.3.1.4.2
Add and .
Step 2.1.2.1.1.3.1.4.3
Add and .
Step 2.1.2.1.1.3.1.5
Move to the left of .
Step 2.1.2.1.1.3.1.6
Multiply by .
Step 2.1.2.1.1.3.2
Add and .
Step 2.1.2.1.1.3.3
Subtract from .
Step 2.1.2.1.1.4
Rewrite as .
Step 2.1.2.1.1.5
Expand using the FOIL Method.
Step 2.1.2.1.1.5.1
Apply the distributive property.
Step 2.1.2.1.1.5.2
Apply the distributive property.
Step 2.1.2.1.1.5.3
Apply the distributive property.
Step 2.1.2.1.1.6
Simplify and combine like terms.
Step 2.1.2.1.1.6.1
Simplify each term.
Step 2.1.2.1.1.6.1.1
Multiply by .
Step 2.1.2.1.1.6.1.2
Move to the left of .
Step 2.1.2.1.1.6.1.3
Multiply by .
Step 2.1.2.1.1.6.2
Add and .
Step 2.1.2.1.2
Simplify by adding terms.
Step 2.1.2.1.2.1
Combine the opposite terms in .
Step 2.1.2.1.2.1.1
Add and .
Step 2.1.2.1.2.1.2
Add and .
Step 2.1.2.1.2.2
Add and .
Step 2.2
Solve for in .
Step 2.2.1
Move all terms not containing to the right side of the equation.
Step 2.2.1.1
Subtract from both sides of the equation.
Step 2.2.1.2
Subtract from both sides of the equation.
Step 2.2.1.3
Subtract from .
Step 2.2.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 2.2.3
Simplify each side of the equation.
Step 2.2.3.1
Use to rewrite as .
Step 2.2.3.2
Simplify the left side.
Step 2.2.3.2.1
Simplify .
Step 2.2.3.2.1.1
Expand using the FOIL Method.
Step 2.2.3.2.1.1.1
Apply the distributive property.
Step 2.2.3.2.1.1.2
Apply the distributive property.
Step 2.2.3.2.1.1.3
Apply the distributive property.
Step 2.2.3.2.1.2
Simplify and combine like terms.
Step 2.2.3.2.1.2.1
Simplify each term.
Step 2.2.3.2.1.2.1.1
Multiply by .
Step 2.2.3.2.1.2.1.2
Multiply by .
Step 2.2.3.2.1.2.1.3
Move to the left of .
Step 2.2.3.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.2.3.2.1.2.1.5
Multiply by by adding the exponents.
Step 2.2.3.2.1.2.1.5.1
Move .
Step 2.2.3.2.1.2.1.5.2
Multiply by .
Step 2.2.3.2.1.2.2
Add and .
Step 2.2.3.2.1.2.3
Add and .
Step 2.2.3.2.1.3
Apply the product rule to .
Step 2.2.3.2.1.4
Raise to the power of .
Step 2.2.3.2.1.5
Multiply the exponents in .
Step 2.2.3.2.1.5.1
Apply the power rule and multiply exponents, .
Step 2.2.3.2.1.5.2
Cancel the common factor of .
Step 2.2.3.2.1.5.2.1
Cancel the common factor.
Step 2.2.3.2.1.5.2.2
Rewrite the expression.
Step 2.2.3.2.1.6
Simplify.
Step 2.2.3.2.1.7
Apply the distributive property.
Step 2.2.3.2.1.8
Multiply.
Step 2.2.3.2.1.8.1
Multiply by .
Step 2.2.3.2.1.8.2
Multiply by .
Step 2.2.3.3
Simplify the right side.
Step 2.2.3.3.1
Simplify .
Step 2.2.3.3.1.1
Rewrite as .
Step 2.2.3.3.1.2
Expand using the FOIL Method.
Step 2.2.3.3.1.2.1
Apply the distributive property.
Step 2.2.3.3.1.2.2
Apply the distributive property.
Step 2.2.3.3.1.2.3
Apply the distributive property.
Step 2.2.3.3.1.3
Simplify and combine like terms.
Step 2.2.3.3.1.3.1
Simplify each term.
Step 2.2.3.3.1.3.1.1
Multiply by .
Step 2.2.3.3.1.3.1.2
Multiply by .
Step 2.2.3.3.1.3.1.3
Multiply by .
Step 2.2.3.3.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.2.3.3.1.3.1.5
Multiply by by adding the exponents.
Step 2.2.3.3.1.3.1.5.1
Move .
Step 2.2.3.3.1.3.1.5.2
Multiply by .
Step 2.2.3.3.1.3.1.6
Multiply by .
Step 2.2.3.3.1.3.2
Add and .
Step 2.2.4
Solve for .
Step 2.2.4.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 2.2.4.2
Move all terms containing to the left side of the equation.
Step 2.2.4.2.1
Add to both sides of the equation.
Step 2.2.4.2.2
Add and .
Step 2.2.4.3
Subtract from both sides of the equation.
Step 2.2.4.4
Combine the opposite terms in .
Step 2.2.4.4.1
Subtract from .
Step 2.2.4.4.2
Add and .
Step 2.2.4.5
Factor out of .
Step 2.2.4.5.1
Factor out of .
Step 2.2.4.5.2
Factor out of .
Step 2.2.4.5.3
Factor out of .
Step 2.2.4.6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.2.4.7
Set equal to .
Step 2.2.4.8
Set equal to and solve for .
Step 2.2.4.8.1
Set equal to .
Step 2.2.4.8.2
Subtract from both sides of the equation.
Step 2.2.4.9
The final solution is all the values that make true.
Step 2.3
Replace all occurrences of with in each equation.
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify .
Step 2.3.2.1
Simplify the left side.
Step 2.3.2.1.1
Remove parentheses.
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify .
Step 2.3.2.2.1.1
Add and .
Step 2.3.2.2.1.2
Multiply by .
Step 2.3.2.2.1.3
Add and .
Step 2.3.2.2.1.4
Multiply by .
Step 2.3.2.2.1.5
Rewrite as .
Step 2.3.2.2.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4
Replace all occurrences of with in each equation.
Step 2.4.1
Replace all occurrences of in with .
Step 2.4.2
Simplify .
Step 2.4.2.1
Simplify the left side.
Step 2.4.2.1.1
Remove parentheses.
Step 2.4.2.2
Simplify the right side.
Step 2.4.2.2.1
Simplify .
Step 2.4.2.2.1.1
Subtract from .
Step 2.4.2.2.1.2
Multiply by .
Step 2.4.2.2.1.3
Add and .
Step 2.4.2.2.1.4
Multiply by .
Step 2.4.2.2.1.5
Rewrite as .
Step 2.4.2.2.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 3
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 4
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 5